量子物理学的里程碑:把光存进“手提箱”
信息的存储和传输是任何计算系统的基本组成部分,量子计算系统也不例外,光量子信息的受控操纵、存储和读取,对于量子通信和计算的发展至关重要。
如果我们要从量子通信和计算的速度和安全性中获益,那么我们就需要弄清楚如何将量子数据转移。
现有的方法是:使用光来存储数据作为粒子状态图,利用光学量子存储器存储和传输光。然而,对于量子通信,光不是很容易被“捕获”的,用光来传输数据是不受控制的,通常光会丢失。
德国美因茨大学的物理学家Patrick Windpassinger教授解决了这一难题,他们采用电磁诱导透明(EIT)技术技术,成功地演示了利用冷87Rb原子,实现了在1.2mm距离(大于存储介质尺寸的距离)上存储光的主动受控传输,用光学传送带将包含暗态极化子(DSP)的整个集合传送几毫米,最后将光脉冲重新读取出来。他们已经证明,受控的运输过程及其动力学对存储的光的性质影响很小。研究人员使用冷87Rb原子作为光的存储介质,以实现高水平的存储效率和长寿命。这一成果将为未来量子计算机和量子通信奠定基础。
该成果以”Controlled Transport of Stored Light”题,发表在Physical Review Letters。
Patrick Windpassinger说:“我们把光放在手提箱里储存,只是我们的箱子是由一团冷原子云构成的。我们把这个手提箱移了一小段距离,然后又把光拿出来。这不仅对物理学非常有意思,对量子通信也很有趣,因为光不是很容易被‘捕获’的,如果你想以可控的方式将其传输到其他地方,它通常会丢失。”
图源:Veer
这项工作利用了电磁感应透明(EIT)技术,在这种技术中,原子可以作为存储设备来捕获和映射光脉冲。入射光脉冲被捕获并相干映射,以产生存储介质的集体激发,形成强耦合的光-物质准粒子,即暗态极化子(DSPs)。由于这一过程是可逆的,使用控制光束可以打开和关闭存储介质的透明度,从而从介质中存储和读取光。
图1 铷-87原子低温真空预冷实验
图源:Windpassinger group
搭建如图2所示的实验系统,通过激光照射在磁光阱(MOT)中的冷87Rb原子,并通过两束反向传播的810nm圆偏振光,把它们转移到一个红色失谐的光学晶格中。强耦合通常需要光束的紧密聚焦,但有限的瑞利范围会导致耦合距离短,所以采用在准一维波导中(或附近)捕获纵向延伸的原子样品来避免,如空芯光子晶体光纤(HC-PCF)。沿着晶格轴宽度为1.2mm的俘获原子系综,可以通过相互去谐晶格束之间的频率而传输到HC-PCF中。探测光束(Ωp)和控制光束(Ωc)在分色镜处与晶格光束重叠,所有光束都仔细地耦合到HC-PCF的基模上。
本文系作者授权本站发表,未经许可,不得转载。